Digital Circuits ECS 371

Dr. Prapun Suksompong

Lecture 19

ECS371.PRAPUN.COM

Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

K-Map Derivation of Partial Decoding

 Q_0

(a)

Q_3	Q_2	Q_1	Q_0	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

74x93

- 4-Bit Asynchronous Binary Counter
- Consist of single flip-flop and a 3-bit asynchronous counter.

74x93

- The counter can be extended to form a 4-bit counter by connecting Q_0 to the CLK B input.
- Provide gated reset inputs, RO(1) and RO(2).
 - When both of these inputs are HIGH, the counter is reset to the 0000 state.

Exercise: Show how to connect a 74x93 4-bit asynchronous counter as a MOD12 counter.

The qualifying label "CTR DIV N" indicates a counter with N states.

Synchronous Counters

- The term **synchronous** refers to events that have a fixed time relationship with each other.
- A **synchronous counter** is one in which all the flip-flops in the counter are clocked at the same time by a **common** clock pulse.
- Synchronous counters overcome the disadvantage of accumulated propagation delays, but generally they require more circuitry to control states changes.

Ex: 2-Bit Synchronous Binary Counter

HIGH

Summary of Analysis

- 1. Find the equations that govern the relationship between the inputs (J_i, K_i) and the outputs (states: Q_i) of the FFs.
- 2. Start with a relevant arbitrary state (combination of outputs).
 - We will start with a state where every Q_i is 0.
- 3. Calculate the value of the inputs (J_i, K_i) of all FFs.
 - This tell us the modes of the FFs.

20

- 4. Find the next state (combination of outputs of the FFs) at the next clock pulse from the modes.
- 5. Repeat the last two steps until the counter recycles.

Ex: 3-bit Binary Synchronous Counter

• This 3-bit binary synchronous counter has the same count sequence as the 3-bit asynchronous counter shown previously.

Analysis of Synchronous Counters

A tabular technique for analysis is illustrated for the counter on the previous slide. (1) Write the logic equation for each input.

(2) Put the counter in an arbitrary	(4) Use the new inputs to	(5) Set up the next
state; then (3) determine the	determine the next state: Q_2 and Q_1	group of inputs from
inputs for this state.	will latch and Q_0 will toggle.	the current output.

Outputs	Logic for inputs										
$Q_2 Q_1 Q_0$	$J_2 = Q_0 Q_1 \qquad K_2 = Q_0 Q_1$		$J_1 = Q_0 \qquad K_1 = Q_0$		$J_0 = 1$	$K_0 = 1$					
0 0 0	0	0	0	0	1	1					
0 0 1	0	0 0 1		1	1	1					
0 1 0	(6) Q_2 will la	(6) Q_2 will latch again but both Q_1 and Q_0 will toggle.									

(7) Continue like this, to complete the table.The next slide shows the completed table...

Analysis of Synchronous Counters

Outputs		Logic	c for inputs						
$Q_2 Q_1 Q_0$	$J_2 = Q_0 Q_1$	$K_2 = Q_0 Q_1$	$J_1 = Q_0$	$K_1 = Q_0$	$J_0 = 1$	$K_0 = 1$			
0 0 0	0	0	0	0	1	1			
0 0 1	0	0	1	1	1	1			
0 1 0	0	0	0	0	1	1			
0 1 1	1	1	1	1	1	1			
1 0 0	0	0	0	0	1	1			
1 0 1	0	0	1	1	1	1			
1 1 0	0	0	0	0	1	1			
1 1 1	1	1	1	1	1	1			
0 0 0 ← At this point all states have been accounted for and the counter is ready to recycle									

4-bit Synchronous Binary Counter

BCD Decade Counter

- With some additional logic, a binary counter can be converted to a BCD synchronous decade counter.
- After reaching the count 1001, the counter recycles to 0000.

BCD Decade Counter: Tabular Analysis

<i>Q</i> ₃	Q ₂	Q ₁	Q_0	$J_3 = K_3 = Q_0 Q_3 + Q_0 Q_1 Q_2$	$J_2 = K_2 = Q_0 Q_1$	$J_1 = K_1 = Q_0 \overline{Q_3}$	$J_0 = K_0 = 1$
0	0	0	0				

BCD Decade Counter Design

- The previous slide shows that the given design works.
- How can we get it in the first place?
- In particular, where do these parts come from?

BCD Decade Counter: Derivation

Q_3	Q_2	Q_1	Q_0	$J_{3} = K_{3}$	$J_{2} = K_{2}$	$J_{1} = K_{1}$	$J_0 = K_0$
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1
0	0	0	0				

31

74x163

- 4-bit Synchronous Binary Counter
- Has several extra features
- Can be *synchronously preset* to any 4-bit binary number when the active-LOW LOAD input is activated.
- The active-LOW clear input (CLR) *synchronously resets* all four FFs.
- The two enable inputs, ENP and ENT must both be HIGH for the counter to sequence through its binary states.

Data outputs

• The ripple clock output (RCO) goes HIGH when the counter reaches the last state in its sequence of fifteen, called the terminal count (TC = 15).

Example: 74x163

74x163: State Table

State table for a 74163 synchronous 4-bit binary counter

	Current State			Outputs								
	LD_L	ENT	ENP	QD	QC	QB	QA	QD*	QC*	QB*	QA*	RCO*
0	x	x	x	х	x	х	x	0	0	0	0	
1	0	х	х	х	х	х	х	D	С	В	Α	
1	1	0	х	х	х	х	х	QD	QC	QB	QA	
1	1	х	0	х	х	х	х	QD	QC	QB	QA	
1	1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	1	0	0	1	0	0
1	1	1	1	0	0	1	0	0	0	1	1	0
1	1	1	1	0	0	1	1	0	1	0	0	0
1	1	1	1	0	1	0	0	0	1	0	1	0
1	1	1	1	0	1	0	1	0	1	1	0	0
1	1	1	1	0	1	1	0	0	1	1	1	0
1	1	1	1	0	1	1	1	1	0	0	0	0
1	1	1	1	1	0	0	0	1	0	0	1	0
1	1	1	1	1	0	0	1	1	0	1	0	0
1	1	1	1	1	0	1	0	1	0	1	1	0
1	1	1	1	1	0	1	1	1	1	0	0	0
1	1	1	1	1	1	0	0	1	1	0	1	0
1	1	1	1	1	1	0	1	1	1	1	0	0
1	1	1	1	1	1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1	0	0	0	0	0

74x163: Application

• Count from 0 to 10. Then, repeat.

74x163: Application

• Count from 5 to 15. Then, repeat.

Exercise

What will this counter do?

