Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@sitit.tu.ac.th Lecture 19Office Hours:
BKD 3601-7
Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

K-Map Derivation of Partial Decoding

Q_{3}	Q_{2}	Q_{1}	Q_{0}	$C L R$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Ex: MOD12 Counter

(a)

74×93

- 4-Bit Asynchronous Binary Counter
- Consist of single flip-flop and a 3-bit asynchronous counter.

74×93

- The counter can be extended to form a 4-bit counter by connecting Q_{0} to the CLK B input.
- Provide gated reset inputs, $\mathrm{RO}(1)$ and $\mathrm{RO}(2)$.
- When both of these inputs are HIGH, the counter is reset to the 0000 state.

74x93 Applications

74×93 as a MOD 16 counter

Exercise: Show how to connect a
74x93 4-bit asynchronous counter as
a MOD12 counter.

Synchronous Counters

- The term synchronous refers to events that have a fixed time relationship with each other.
- A synchronous counter is one in which all the flip-flops in the counter are clocked at the same time by a common clock pulse.
- Synchronous counters overcome the disadvantage of accumulated propagation delays, but generally they require more circuitry to control states changes.

Ex: 2-Bit Synchronous Binary Counter

HIGH

CLK

Summary of Analysis

1. Find the equations that govern the relationship between the inputs (J_{i}, K_{i}) and the outputs (states: Q_{i}) of the FFs.
2. Start with a relevant arbitrary state (combination of outputs).

We will start with a state where every Q_{i} is 0 .
3. Calculate the value of the inputs $\left(\mathrm{J}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}\right)$ of all FFs.

This tell us the modes of the FFs.
4. Find the next state (combination of outputs of the FFs) at the next clock pulse from the modes.
5. Repeat the last two steps until the counter recycles.

Outputs			J-K Inputs				
Q_{1}	Q_{0}	$J_{1}=Q_{0}$	$K_{1}=Q_{0}$	$J_{0}=1$	$K_{0}=1$		
0	0	0	0	1	1		
0	1	1	1	1	1		
1	0	0	0	1	1		
1	1	1	1	1	1		

Ex: 3-bit Binary Synchronous Counter

- This 3-bit binary synchronous counter has the same count sequence as the 3-bit asynchronous counter shown previously.

Analysis of Synchronous Counters

A tabular technique for analysis is illustrated for the counter on the previous slide. (1) Write the logic equation for each input.

| (2) Put the counter in an arbitrary |
| :--- | :--- | :--- |
| state; then (3) determine the |
| inputs for this state. | | (4) Use the new inputs to |
| :--- |
| determine the next state: Q_{2} and Q_{4} |
| will latch and Q_{0} will toggle. | | (5) Set up the next |
| :--- |
| group of inputs from |
| the current output. |

Outputs	Logic for inputs					
$Q_{2} Q_{1} Q_{0}$	$J_{2}=Q_{0} Q_{1}$	$K_{2}=Q_{0} Q_{1}$	$J_{1}=Q_{0}$	$K_{1}=Q_{0}$	$J_{0}=1$	$K_{0}=1$
$\begin{array}{lll}0 & 0 & 0\end{array}$	0	0	0	0	1	1
$\begin{array}{llll}0 & 0 & 1\end{array}$	0	0	1	1	1	1
$\begin{array}{llll}0 & 1 & 0\end{array}$	(6) Q_{2} will latch again but both Q_{1} and Q_{0} will toggle.					

(7) Continue like this, to complete the table. The next slide shows the completed table...

Analysis of Synchronous Counters

Outputs	Logic for inputs					
$Q_{2} Q_{1} Q_{0}$	$J_{2}=Q_{0} Q_{1}$	$K_{2}=Q_{0} Q_{1}$	$J_{1}=Q_{0}$	$K_{1}=Q_{0}$	$J_{0}=1$	$K_{0}=1$
$0 \quad 00$	0	0	0	0	1	1
$\begin{array}{llll}0 & 0 & 1\end{array}$	0	0	1	1	1	1
$0 \begin{array}{lll}0 & 1 & 0\end{array}$	0	0	0	0	1	1
$\begin{array}{llll}0 & 1 & 1\end{array}$	1	1	1	1	1	1
$1 \begin{array}{lll}1 & 0 & 0\end{array}$	0	0	0	0	1	1
$\begin{array}{llll}1 & 0 & 1\end{array}$	0	0	1	1	1	1
$\begin{array}{lll}1 & 1 & 0\end{array}$	0	0	0	0	1	1
$\begin{array}{llll}1 & 1 & 1\end{array}$	1	1	1	1	1	1
	At this point all states have been accounted for and the counter is ready to recycle...					

4-bit Synchronous Binary Counter

The 4-bit binary counter has one more AND gate than the 3-bit counter just described. The shaded areas show where the AND gate outputs are HIGH causing the next FF to toggle.

BCD Decade Counter

- With some additional logic, a binary counter can be converted to a BCD synchronous decade counter.
- After reaching the count 1001, the counter recycles to 0000 .

BCD Decade Counter: Tabular Analysis

Q_{3}	Q_{2}	Q_{1}	Q_{0}	$J_{3}=K_{3}=Q_{0} Q_{3}+Q_{0} Q_{1} Q_{2}$	$J_{2}=K_{2}=Q_{0} Q_{1}$	$J_{1}=K_{1}=Q_{0} \overline{Q_{3}}$	$J_{0}=K_{0}=1$
0	0	0	0				

BCD Decade Counter Design

- The previous slide shows that the given design works.
- How can we get it in the first place?
- In particular, where do these parts come from?

BCD Decade Counter: Derivation

Q_{3}	Q_{2}	Q_{1}	Q_{0}	$J_{3}=K_{3}$	$J_{2}=K_{2}$	$J_{1}=K_{1}$	$J_{\mathrm{o}}=K_{\mathrm{o}}$
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1
0	0	0	0				

Data inputs

74×163

- 4-bit Synchronous Binary Counter
- Has several extra features
- Can be synchronously preset to any 4-bit binary number when the active-LOW LOAD input is activated.
- The active-LOW clear input (CLR) synchronously resets all four FFs.
- The two enable inputs, ENP and ENT must both be HIGH for the counter to sequence through its binary states.

- The ripple clock output (RCO) goes HIGH when the counter reaches the last state in its sequence of fifteen, called the terminal count

Example: 74x163

74x163: Logic Diagram

	74×163	
2	CLK	
1	CLR	
${ }_{7} 0$	LD	
	ENP	
10	ENT	
3	A QA	14
4		13
5		12
6	D	11
	RCO	15

74x163: State Table

State table for a 74163 synchronous 4-bit binary counter

Inputs				Current State				Outputs				
CLR_L	LD_L	ENT	ENP	QD	QC	QB	QA	QD*	QC*	QB*	QA*	RCO*
$\mathbf{0}$	x	x	x	x	x	x	x	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{0}$	x	x	x	x	x	x	D	C	B	A	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	x	x	x	x	x	QD	QC	QB	QA	
$\mathbf{1}$	$\mathbf{1}$	x	$\mathbf{0}$	x	x	x	x	QD	QC	QB	QA	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$						
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$						
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$							

74x163: Application

- Count from 0 to 10 . Then, repeat.

74x163: Application

- Count from 5 to 15 . Then, repeat.

Exercise

What will this counter do?

